Search
Solution

Project 3: Markovian reservoir engineering

Solution

# Imports
import numpy as np
import matplotlib.pyplot as plt

from datetime import datetime
import json
import copy

# Main qiskit imports
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, execute, Aer, IBMQ

# Error mitigation
from qiskit.ignis.mitigation.measurement import (complete_meas_cal, 
                                                CompleteMeasFitter, 
                                                MeasurementFilter)

# Utility functions
from qiskit.tools.jupyter import *
from qiskit.tools.monitor import job_monitor
from qiskit.providers.jobstatus import JobStatus
# We use ibmqx2
IBMQ.load_account()
backend = IBMQ.get_provider(hub='ibm-q', group='open', project='main').get_backend('ibmqx2')

# Local simulator
simulator = Aer.get_backend('qasm_simulator')

Task 1

def zz_pump(q, c, p, system, ancilla):
    """Returns a QuantumCircuit implementing the ZZ pump channel on the system qubits
    
    Args:
        q (QuantumRegister): the register to use for the circuit
        c (ClassicalRegister): the register to use for the measurement of the system qubits
        p (float): the efficiency for the channel, between 0 and 1
        system (list): list of indices for the system qubits
        ancilla (int): index for the ancillary qubit
    
    Returns:
        A QuantumCircuit object
    """
    zz = QuantumCircuit(q, c)
    
    theta = 2 * np.arcsin(np.sqrt(p))
    
    # Map information to ancilla
    zz.cx(q[system[0]], q[system[1]])
    zz.x(q[ancilla])
    zz.cx(q[system][1], q[ancilla])
    
    # Conditional rotation
    zz.cu3(theta, 0.0, 0.0, q[ancilla], q[system[1]])
    
    # Inverse mapping
    zz.cx(q[system[1]], q[ancilla])
    
    # Measurement
    zz.h(q[system[0]])
    zz.measure(q[system[0]], c[0])
    zz.measure(q[system[1]], c[1])
    
    return zz
def xx_pump(q, c, p, system, ancilla):
    """Returns a QuantumCircuit implementing the XX pump channel on the system qubits
    
    Args:
        q (QuantumRegister): the register to use for the circuit
        c (ClassicalRegister): the register to use for the measurement of the system qubits
        p (float): the efficiency for the channel, between 0 and 1
        system (list): list of indices for the system qubits
        ancilla (int): index for the ancillary qubit
    
    Returns:
        A QuantumCircuit object
    """
    xx = QuantumCircuit(q, c)

    theta = 2 * np.arcsin(np.sqrt(p))
    
    # Map information to ancilla
    xx.cx(q[system[0]], q[system[1]])
    xx.h(q[system[0]])
    xx.x(q[ancilla])
    xx.cx(q[system[0]], q[ancilla])
    
    # Conditional rotation
    xx.cu3(theta, 0.0, 0.0, q[ancilla], q[system[0]])
    
    # Inverse mapping
    xx.cx(q[system[0]], q[ancilla])
    
    # Measurement
    xx.measure(q[system[0]], c[0])
    xx.measure(q[system[1]], c[1])
    
    return xx
def zz_xx_pump(q, c, p, system, ancillae):
    """Returns a QuantumCircuit implementing the composition channel on the system qubits
    
    Args:
        q (QuantumRegister): the register to use for the circuit
        c (ClassicalRegister): the register to use for the measurement of the system qubits
        p (float): the efficiency for both channels, between 0 and 1
        system (list): list of indices for the system qubits
        ancillae (list): list of indices for the ancillary qubits
    
    Returns:
        A QuantumCircuit object
    """
    zx = QuantumCircuit(q, c)
    
    theta = 2 * np.arcsin(np.sqrt(p))
    
    # ZZ pump
    ## Map information to ancilla
    zx.cx(q[system[0]], q[system[1]])
    zx.x(q[ancillae[0]])
    zx.cx(q[system[1]], q[ancillae[0]])
    
    ## Conditional rotation
    zx.cu3(theta, 0.0, 0.0, q[ancillae[0]], q[system[1]])
    
    ## Inverse mapping
    zx.cx(q[system[1]], q[ancillae[0]])
    
    # XX pump
    ## Map information to ancilla
    zx.h(q[system[0]])
    zx.x(q[ancillae[1]])
    zx.cx(q[system[0]], q[ancillae[1]])
    
    ## Conditional rotation
    zx.cu3(theta, 0.0, 0.0, q[ancillae[1]], q[system[0]])
    
    ## Inverse mapping
    zx.cx(q[system[0]], q[ancillae[1]])
    
    # Measurement
    zx.measure(q[system[0]], c[0])
    zx.measure(q[system[1]], c[1])
    
    return zx

Tasks 2-3

For convenience, we define a function returning the four initial state preparations

def initial_conditions(q, system):
    """Returns a dictionary containing four QuantumCircuit objects which prepare the two-qubit system in different initial states
    
    Args:
        q (QuantumRegister): the register to use for the circuit
        system (list): list of indices for the system qubits
    
    Returns:
        A dictionary with the initial state QuantumCircuit objects and a list of labels
    """
    # State labels
    state_labels = ['00', '01', '10', '11']
    
    ic = {}
    for ic_label in state_labels:
        ic[ic_label] = QuantumCircuit(q)
    
    # |01>
    ic['01'].x(q[system[0]])
    
    # |10>
    ic['10'].x(q[system[1]])
    
    # |11>
    ic['11'].x(q[system[0]])
    ic['11'].x(q[system[1]])
    
    return ic, state_labels
SHOTS = 8192

# The values for p
p_values = np.linspace(0, 1, 10)

# We create the quantum circuits
q = QuantumRegister(5, name='q')
c = ClassicalRegister(2, name='c')

## Index of the system qubit
system = [2, 1]

## Indices of the ancillary qubits
a_zz = 0
a_xx = 4

## Prepare the qubits in four initial conditions
ic_circs, ic_state_labels = initial_conditions(q, system)

## Three different channels, each with 
## four initial conditions and ten values of p
pumps = ['ZZ', 'XX', 'ZZ_XX']
circuits = {}
for pump in pumps:
    circuits[pump] = {}
    for ic in ic_state_labels:
        circuits[pump][ic] = []
for ic in ic_state_labels:
    for p in p_values:
        circuits['ZZ'][ic].append(ic_circs[ic]+zz_pump(q, c, p, system, a_zz))
        circuits['XX'][ic].append(ic_circs[ic]+xx_pump(q, c, p, system, a_xx))
        circuits['ZZ_XX'][ic].append(ic_circs[ic]+zz_xx_pump(q, c, p, system, [a_zz, a_xx]))
circuits['ZZ_XX']['00'][1].draw(output='mpl')
# Execute the circuits on the local simulator
jobs_sim = {}
for pump in pumps:
    jobs_sim[pump] = {}
    for ic in ic_state_labels:
        jobs_sim[pump][ic] = execute(circuits[pump][ic], backend = simulator, shots = SHOTS)

# Analyse the outcomes
overlaps_sim = {}
for pump in pumps:
    overlaps_sim[pump] = {}
    for ic in ic_state_labels:
        overlaps_sim[pump][ic] = [0.0]*len(p_values)
    for i in range(len(p_values)):
        for ic in ic_state_labels:
            counts = jobs_sim[pump][ic].result().get_counts(i)
            for outcome in counts:
                overlaps_sim[pump][outcome][i] += counts[outcome]/(4.0 * float(SHOTS))

# Plot the results
fig_idx = 131
plt.figure(figsize=(15,6))
bell_labels = {'00': r"$| \phi^{+} \rangle$", '01': r"$| \phi^{-} \rangle$", '10': r"$| \psi^{+} \rangle$", '11': r"$| \psi^{-} \rangle$"}
for pump in pumps:
    plt.subplot(fig_idx)
    for outcome in overlaps_sim[pump]:
        plt.plot(p_values, overlaps_sim[pump][outcome], label = bell_labels[outcome])
    plt.xlabel('p')
    plt.ylabel('Overlap')
    fig_idx += 1
    plt.grid()
plt.legend();

Homework

# Calibration circuits
cal_circuits, state_labels = complete_meas_cal(system, q, c)
# Run the calibration job
calibration_job = execute(cal_circuits, backend, shots=SHOTS)

# Run the circuits and save the jobs
jobs = {}
jobs_data = []
for pump in pumps:
    jobs[pump] = {}
    for ic in ic_state_labels:
        jobs[pump][ic] = execute(circuits[pump][ic], backend = backend, shots = SHOTS)
# Use the calibration job to implement the error mitigation
meas_fitter = CompleteMeasFitter(calibration_job.result(), ic_state_labels)
meas_filter = meas_fitter.filter

overlaps = {}
for pump in pumps:
    overlaps[pump] = {}
    for ic in ic_state_labels:
        overlaps[pump][ic] = [0.0]*len(p_values)
    for i in range(len(p_values)):
        for ic in ic_state_labels:
            counts = meas_filter.apply(jobs[pump][ic].result()).get_counts(i)
            for outcome in counts:
                overlaps[pump][outcome][i] += counts[outcome]/(4 * float(SHOTS))

# Plot the results
fig_idx = 131
plt.figure(figsize=(15,6))
bell_labels = {'00': r"$| \phi^{+} \rangle$", '01': r"$| \phi^{-} \rangle$", '10': r"$| \psi^{+} \rangle$", '11': r"$| \psi^{-} \rangle$"}
for pump in pumps:
    plt.subplot(fig_idx)
    for outcome in overlaps[pump]:
        plt.plot(p_values, overlaps[pump][outcome], label = bell_labels[outcome])
    plt.xlabel('p')
    plt.ylabel('Overlap')
    fig_idx += 1
    plt.grid()
plt.legend();